已知数列{an}的前n项和为Sn,且Sn=2an-2,数列{bn}满足b1=1,且bn+1=bn+2.(1)求数列{an},{bn}的通项公式;(2)设cn=an-bn,求数列{cn}的前2n项和T2n.
(本小题满分12分)已知二项式(N*)展开式中,前三项的二项式系数和是,求:(Ⅰ)的值;(Ⅱ)展开式中的常数项.
(本小题满分14分)若函数对任意的实数,,均有,则称函数是区间上的“平缓函数”. (1) 判断和是不是实数集R上的“平缓函数”,并说明理由;(2) 若数列对所有的正整数都有 ,设, 求证: .
(本小题满分14分)在数和之间插入个实数,使得这个数构成递增的等比数列,将这个数的乘积记为,令,N.(1)求数列的前项和;(2)求.
(本小题满分14分)如图5, 已知抛物线,直线与抛物线交于两点,,,与交于点.(1)求点的轨迹方程;(2)求四边形的面积的最小值.
(本小题满分14分)如图4,已知四棱锥,底面是正方形,面,点是的中点,点是的中点,连接,.(1)求证:面;(2)若,,求二面角的余弦值.