(本小题满分12分)已知二项式(N*)展开式中,前三项的二项式系数和是,求:(Ⅰ)的值;(Ⅱ)展开式中的常数项.
数列 a n , b n 是各项均为正数的等比数列,设 c n = b n a n n ∈ N * .
(Ⅰ)数列 c n 是否为等比数列?证明你的结论;
(Ⅱ)设数列 ln a n , ln b n 的前 n 项和分别为 S n , T n .若 a 1 = 2 , S n T n = n 2 n + 1 ,求数列 c n 的前 n 项和.
如图,在棱长为1的正方体 A B C D - A ` B ` C ` D ` 中, A P = B Q = b 0 < b < 1 ,截面 P Q E F ∥ A ` D .
(Ⅰ)证明:平面 P Q E F 和平面 P Q G H 互相垂直; (Ⅱ)证明:截面 P Q E F 和截面 P Q G H 面积之和是定值, 并求出这个值; (Ⅲ)若 b = 1 2 ,求 D ` E 与平面 P Q E F 所成角的正弦值.
某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率; (Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求 (ⅰ)4周中该种商品至少有一周的销售量为4吨的概率; (ⅱ)该种商品4周的销售量总和至少为15吨的概率.
在 △ A B C 中,内角 A , B , C 对边的边长分别是 a , b , c ,已知 c = 2 , C = π 3 .
(Ⅰ)若 △ A B C 的面积等于 3 ,求 a , b ;
(Ⅱ)若 sin B = 2 sin A ,求 △ A B C 的面积.
青年歌手电视大奖赛共有10名选手参加,并请了12名评委,在计算每位选手的平均分数时,为了避免个别评委所给的极端分数的影响,必须去掉一个最高分和一个最低分后再求平均分数,试设计一个算法,解决该问题,要求画出程序框图(假定分数采用10分制,即每位选手的分数最低为0分,最高为10分).