(本小题满分14分)如图4,已知四棱锥,底面是正方形,面,点是的中点,点是的中点,连接,.(1)求证:面;(2)若,,求二面角的余弦值.
(本题满分15分)已知点在抛物线上,点到抛物线的焦点F的距离为2.(Ⅰ)求抛物线的方程;(Ⅱ)已知直线与抛物线C交于O (坐标原点),A两点,直线与抛物线C交于B,D两点. (ⅰ) 若 |,求实数的值;(ⅱ) 过A,B,D分别作y轴的垂线,垂足分别为A1,B1,D1.记分别为三角形OAA1和四边形BB1D1D的面积,求的取值范围.
.(本小题满分15分)如图,在四棱锥中,底面是边长为2的正方形,侧棱,。(1) 求证:侧面底面;(2) 求侧棱与底面所成角的正弦值。
(本小题满分14分)已知椭圆:两个焦点之间的距离为2,且其离心率为. (Ⅰ) 求椭圆的标准方程;(Ⅱ) 若为椭圆的右焦点,经过椭圆的上顶点B的直线与椭圆另一个交点为A,且满足,求外接圆的方程.
(本小题满分14分)在直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系.己知圆的圆心的极坐标为半径为,直线的参数方程为为参数) (Ⅰ)求圆C的极坐标方程;直线的普通方程;(Ⅱ)若圆C和直线相交于A,B两点,求线段AB的长.
(本小题满分14分)已知条件:条件:(Ⅰ)若,求实数的值;(Ⅱ)若是的充分条件,求实数的取值范围.