(本小题满分14分)若函数对任意的实数,,均有,则称函数是区间上的“平缓函数”. (1) 判断和是不是实数集R上的“平缓函数”,并说明理由;(2) 若数列对所有的正整数都有 ,设, 求证: .
(本小题满分14分)已知是正数组成的数列,,且点()(nN*)在函数的图象上.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,,求数列的通项公式.
(本题15分)如图,椭圆长轴端点为,为椭圆中心,为椭圆的右焦点,且,.(1)求椭圆的标准方程;(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.
(本题14分)如图,五面体中,.底面是正三角形,.四边形是矩形,二面角为直二面角. (1)在上运动,当在何处时,有∥平面,并且说明理由;(2)当∥平面时,求二面角的余弦值.
(本小题满分14分)设向量,向量,.(1)若向量,求的值;(2)求的最大值及此时的值.
如图,多面体的直观图及三视图如图所示,分别为的中点. (1)求证:平面; (2)求多面体的体积; (3)求证:.