如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA1⊥平面ABC;(2)求二面角A1-BC1-B1的余弦值;(3)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.
(本题满分15分) 在中,三边a,b,c满足:. ⑴探求的最长边; ⑵求的最大角.
(本题满分15分) 已知三次函数的最高次项系数为a,三个零点分别为. ⑴ 若方程有两个相等的实根,求a的值; ⑵若函数在区间内单调递减,求a的取值范围.
(本题满分14分)在三棱柱中,, ⑴求证:平面平面; ⑵如果D为AB的中点,求证:∥平面
(本题满分14分)在平面直角坐标系中,点在角的终边上,点在角的终边上,且 ⑴求的值;⑵求的值。
已知曲线 (I)若直线与曲线只有一个公共点,求实数的取值范围; (II)若直线与曲线恒有两个不同的交点和,且(其中为坐标原点),求实数的取值范围。