(高考真题)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA1⊥平面ABC;(2)求二面角A1-BC1-B1的余弦值;(3)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.
(本小题满分14分) 已知函数 (1)当时,求函数的单调区间; (2)求函数在区间上的最小值.
(本小题满分14分) 设数列的前项和为,且 . (1)求数列的通项公式; (2)设,数列的前项和为,求证:.
(本小题满分13分) 已知函数 (1)当时,求曲线处的切线方程; (2)设的两个极值点,的一个零点,且证明:存在实数按照某种顺序排列后构成等差数列,并求.
(本小题满分13分) 正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角. (1)试判断直线与平面的位置关系,并说明理由; (2)求二面角的余弦值; (3)在线段上是否存在一点,使?证明你的结论.
在等比数列{}中,,公比,且, 与的等比中项为2. (1)求数列{}的通项公式; (2)设,数列{}的前项和为,当最大时,求的值.