数列的前n项和为,存在常数A,B,C,使得对任意正整数n都成立.⑴若数列为等差数列,求证:3A B+C=0;⑵若设数列的前n项和为,求;⑶若C=0,是首项为1的等差数列,设数列的前2014项和为P,求不超过P的最大整数的值.
设是定义在上函数,且对任意,当时,都有成立.解不等式.
解方程.
已知, 试用表示.
已知函数的定义域为R,对任意,均有,且对任意都有.(1)试证明:函数在R上是单调函数;(2)判断的奇偶性,并证明;(3)解不等式;(4)试求函数在上的值域.
一片森林原来面积为,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年。为保护生态环境,森林面积至少要保留原来面积的。已知到今年为止,森林剩余面积为原来的.(1)求每年砍伐面积的百分比(用式子表示);(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?