解方程.
(本小题12分)设命题实数满足,其中,命题实数满足. (Ⅰ)若,且为真,求实数的取值范围; (Ⅱ)若是的充分不必要条件,求实数的取值范围.
已知椭圆的两个焦点F1(-,0),F2(,0),且椭圆短轴的两个端点与F2构成正三角形. (Ⅰ)求椭圆的方程; (Ⅱ)过点(1,0)且与坐标轴不平行的直线l与椭圆交于不同两点P、Q,若在x轴上存在定点E(m,0),使·恒为定值,求m的值.
已知命题p:方程在[-1,1]上有且仅有一解.命题q:对于任意实数x都不满足不等式.若命题“p或q”是假命题,求a的取值范围.
如图,在直三棱柱中,,分别是的中点,且. (Ⅰ)求证:∥平面; (Ⅱ)求证:平面⊥平面.
某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,求所需租赁费最少为多少元?