下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天(1)求此人到达当日空气重度污染的概率(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望.(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)
已知函数(Ⅰ)求的值;(Ⅱ)求的最大值和最小值.
(14分)设是椭圆的两点,,,且,椭圆离心率,短轴长为2,O为坐标原点。(1) 求椭圆方程; (2) 若存在斜率为的直线AB过椭圆的焦点(为半焦距),求的值; (3) 试问的面积是否为定值?若是,求出该定值;若不是,说明理由。
(13分)已知数列{}的前n项和Sn=--+2(n为正整数).(1)令=,求证数列{}是等差数列,并求数列{}的通项公式;(2)令=,若Tn=c1+c2+…+cn, 求Tn。
(12分) 设,.(1)求在上的值域;(2)若对于任意,总存在,使得成立,求的取值范围.
(12分) 如图,正三棱柱中,是的中点,(1)求证:∥平面;(2)求二面角的大小.