设是首项为a,公差为d的等差数列,是其前n项的和。记,其中c为实数。(1)若,且成等比数列,证明:;(2)若是等差数列,证明:。
如图,在三棱柱中,底面是边长为2的正三角形,侧棱长为3,且侧棱面,点是的中点. (1)求证:;(2)求证:∥平面
(1)求函数的导数 (2)已知,求及
已知椭圆的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为,倾斜角为的直线过点. (Ⅰ)求该椭圆的方程; (Ⅱ)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得与关于直线对称,若存在,求出点的坐标,若不存在,说明理由.
已知的第五项的二项式系数与第三项的二项式系数的比是,求展开式中不含x的项.
如图5,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,,. (1)求证:AC⊥BF; (2)求二面角F—BD—A的余弦值; (3) 求点A到平面FBD的距离.