公差不为0的等差数列中,且成等比数列.(I)求的通项公式;(Ⅱ)设试比较与的大小,并说明理由.
(本小题满分12分)某种食品是经过、、三道工序加工而成的,、、工序的产品合格率分别为、、.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场.(Ⅰ)正式生产前先试生产袋食品,求这2袋食品都为废品的概率;(Ⅱ)设为加工工序中产品合格的次数,求的分布列和数学期望.
(本小题满分12分)如图一,平面四边形关于直线对称,.把沿折起(如图二),使二面角的余弦值等于.对于图二,完成以下各小题:(Ⅰ)求两点间的距离;(Ⅱ)证明:平面;(Ⅲ)求直线与平面所成角的正弦值.
(本小题满分12分)已知向量(为常数且),函数在上的最大值为.(Ⅰ)求实数的值;(Ⅱ)把函数的图象向右平移个单位,可得函数的图象,若在上为增函数,求的最大值.
(1)若与2的大小,并说明理由;(2)设m是和1中最大的一个,当
(本小题满分10分) 如图所示,已知PA与⊙O相切,A为切点,PBC为割线,,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF·EC. (1)求证:ÐP=ÐEDF; (2)求证:CE·EB=EF·EP.