(本小题满分12分)如图一,平面四边形关于直线对称,.把沿折起(如图二),使二面角的余弦值等于.对于图二,完成以下各小题:(Ⅰ)求两点间的距离;(Ⅱ)证明:平面;(Ⅲ)求直线与平面所成角的正弦值.
已知双曲线的中心在坐标原点,焦点在轴上,实轴长是虚轴长的2倍,且过点, 求双曲线的标准方程及离心率.
已知抛物线的方程为,点在抛物线上. (1)求抛物线的方程; (2)过点作直线交抛物线于不同于的两点,若直线分别交直线于两点,求最小时直线的方程.
已知二次函数满足,且关于的 方程的两个实数根分别在区间、内. (1)求实数的取值范围; (2)若函数在区间上具有单调性,求实数的取值范围.
(本小题满分15分)在四棱锥中, ,,点是线段上的一点,且,. (1)证明:面面; (2)求直线与平面所成角的正弦值.
(本小题满分14分)已知等差数列的前项和为,且.数列的前项和为,且,. (Ⅰ)求数列,的通项公式; (Ⅱ)设, 求数列的前项和.