(必做题)设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计).(1)求方程有实根的概率;(2)求的分布列和数学期望;(3)求在先后两次出现的点数中有5的条件下,方程有实根的概率.
已知中心在原点,焦点在x轴上的椭圆的左顶点为A,上顶点为B,左焦点F到直线AB的距离为|OB|,求椭圆的离心率.
椭圆过(3,0)点,离心率e=,求椭圆的标准方程.
求椭圆25x2+y2=25的长轴和短轴的长、焦点和顶点坐标及离心率.
某“帆板”集训队在一海滨区域进行集训,该海滨区域的海浪高度(米)随着时间而周期性变化,每天各时刻的浪高数据的平均值如下表:
(Ⅰ)试画出散点图;(Ⅱ)观察散点图,从中选择一个合适的函数模型,并求出该拟合模型的解析式;(Ⅲ)如果确定在白天7时~19时当浪高不低于0。8米时才进行训练,试安排恰当的训练时间。
已知函数(Ⅰ)求函数的最小正周期和图象的对称轴方程(Ⅱ)求函数在区间上的值域