设等比数列{an}的前n项和为Sn.已知an+1=2Sn+2()(1)求数列{an}的通项公式;(2)在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列,①在数列{dn}中是否存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;②求证:.
(12分)如图,在棱长为2的正方体ABCD -A1B1C1D1中,E、F分别为A1D1和CC1 的中点. (1)求证:EF∥平面ACD1; (2)求面EFB与底面ABCD所成的锐二面角余弦值的大小.
(12分)某电视台综艺频道主办一种有奖过关游戏,该游戏设有两关,只有过了第一关,才能玩第二关,每关最多玩两次,连续两次失败者被淘汰出局.过关者可获奖金,只过第一关获奖金900元,两关全过获奖金3600元.某同学有幸参与了上述游戏,且该同学每一次过关的概率均为,各次过关与否互不影响.在游戏过程中,该同学不放弃所有机会. (1)求该同学仅获得900元奖金的概率; (2)若该同学已顺利通过第一关,求他获得3600元奖金的概率; (3)求该同学获得奖金的数学期望(精确到元).
(12分)已知向量,,函数. (1)求函数的最小正周期;(2)若时,求的单调递减区间;
(本小题满分10分)如图5,⊙O1和⊙O2公切线AD和BC相交于点D,A、B、C为切点,直线DO1与⊙O1与E、G两点,直线DO2交⊙O2与F、H两点。 (1)求证:~; (2)若⊙O1和⊙O2的半径之比为9:16,求的值。
(本小题满分12分)已知函数 (1)设两曲线与有公共点,且在公共点处的切线相同,若,试建立关于的函数关系式; (2)在(1)的条件下求的最大值; (3)若时,函数在(0,4)上为单调函数,求的取值范围。