设点A为半径是1的圆O上一定点,在圆周上等可能地任取一点B.(1)求弦AB的长超过圆内接正三角形边长的概率;(2)求弦AB的长超过圆半径的概率.
已知函数,在点处的切线方程为.(Ⅰ)求函数的解析式;(Ⅱ)若对于区间上任意两个自变量的值,都有,求实数的最小值;(Ⅲ)若过点,可作曲线的三条切线,求实数 的取值范围.
已知椭圆C:的离心率为,其中左焦点. (Ⅰ)求出椭圆C的方程;(Ⅱ) 若直线与曲线C交于不同的A、B两点,且线段AB的中点M在圆上,求m的值.
在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.(Ⅰ)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实;(Ⅱ)求多面体ABCDE的体积.
已知函数.(Ⅰ)时,求函数的定义域;(Ⅱ)若关于的不等式的解集是R,求的取值范围.
在△ABC中,角、、所对的边分别为、、,已知向量,且.(Ⅰ) 求角A的大小;(Ⅱ) 若,,求△ABC的面积.