某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段,…后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)从成绩是40~50分及90~100分的学生中选两人,记他们的成绩为x,y,求满足“”的概率.
(本小题满分12分)已知等差数列的前项和为,公差,,且,,成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)从数列中依次取出第2项,第4项,第8项, ,第项, ,按原来顺序组成一个新数列,记该数列的前项和为,求的表达式.
已知函数.(Ⅰ)当时,解不等式;(Ⅱ)当时,若函数既存在最小值,也存在最大值,求所有满足条件的实数的集合.
在直角坐标系中,直线的参数方程为(为参数),若以原点为极点, 轴正半轴为极轴建立极坐标系,已知圆的极坐标方程为,设是圆上任一点,连结并延长到,使.(Ⅰ)求点轨迹的直角坐标方程;(Ⅱ)若直线与点轨迹相交于两点,点的直角坐标为,求的值.
(本小题满分14分)已知二阶矩阵,若矩阵属于特征值的一个特征向量,属于特征值3的一个特征向量.(Ⅰ)求实数的值;(Ⅱ)若向量,计算的值.
(本小题满分14分)已知函数(为自然对数的底数),曲线在处的切线与直线互相垂直.(Ⅰ)求实数的值;(Ⅱ)若对任意, 恒成立,求实数的取值范围;(Ⅲ)设 , .问:是否存在正常数,对任意给定的正整数,都有成立?若存在,求的最小值;若不存在,请说明理由.