(本题满分13分)在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.(1)求取出的两个球上标号为相邻整数的概率;(2)求取出的两个球上标号之和能被3整除的概率.
已知顶点在坐标原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程。
如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?
已知椭圆C的两焦点分别为,长轴长为6。 ⑴求椭圆C的标准方程;⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。
已知的图象经过点,且在处的切线方程是。(1)求的解析式;(2)求的单调递增区间。
(本小题满分10分) 已知抛物线的焦点坐标是F(0,-2), 求它的标准方程。