设函数满足.(1)求的单调递减区间;(2)设锐角的内角所对的边分别为,且,求的取值范围.
(本题满分10分) 选修4—5:不等式选讲已知关于的不等式对于任意的恒成立(Ⅰ)求的取值范围;(Ⅱ)在(Ⅰ)的条件下求函数的最小值.
(本题满分10分) 选修4—4:极坐标与参数方程在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点、的极坐标分别为、,曲线的参数方程为为参数).(Ⅰ)求直线的直角坐标方程;(Ⅱ)若直线和曲线C只有一个交点,求的值.
(本小题满分12分)已知函数(Ⅰ)当对任意的实数x恒成立,求a的取值范围;(Ⅱ)若.
(本小题满分12分)如图,圆与轴相切于点,与轴正半轴相交于两点(点在点的左侧),且.(Ⅰ)求圆的方程;(Ⅱ)过点任作一条直线与椭圆相交于两点,连接,求证:.
(本小题满分12分)如图,三棱柱中,平面,,, 点在线段上,且,.(Ⅰ)求证:直线与平面不平行;(Ⅱ)设平面与平面所成的锐二面角为,若,求的长;(Ⅲ)在(Ⅱ)的条件下,设平面平面,求直线与所成的角的余弦值.