(本小题满分13分)已知函数,其中为自然对数的底数.(Ⅰ)当时,求曲线在处的切线与坐标轴围成的面积;(Ⅱ)若函数存在一个极大值点和一个极小值点,且极大值与极小值的积为,求的值.
已知数列{an}和{bn}满足a1=1,b1=0, 4 a n + 1 = 3 a n - b n + 4 , 4 b n + 1 = 3 b n - a n - 4 .
(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;
(2)求{an}和{bn}的通项公式.
11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求P(X=2);
(2)求事件“X=4且甲获胜”的概率.
如图,长方体 ABCD- A 1 B 1 C 1 D 1的底面 ABCD是正方形,点 E在棱 AA 1上, BE⊥ EC 1.
(1)证明: BE⊥平面 EB 1 C 1;
(2)若 AE= A 1 E,求二面角 B- EC- C 1的正弦值.
已知a,b,c为正数,且满足abc=1.证明:
(1) 1 a + 1 b + 1 c ≤ a 2 + b 2 + c 2 ;
(2) ( a + b ) 3 + ( b + c ) 3 + ( c + a ) 3 ≥ 24 .
在直角坐标系xOy中,曲线C的参数方程为 x = 1 - t 2 1 + t 2 , y = 4 t 1 + t 2 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 2 ρ cos θ + 3 ρ sin θ + 11 = 0 .
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.