在直角坐标系xOy中,曲线C的参数方程为 x = 1 - t 2 1 + t 2 , y = 4 t 1 + t 2 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 2 ρ cos θ + 3 ρ sin θ + 11 = 0 .
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
已知椭圆具有性质:若是椭圆:且为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线和的斜率都存在,并分别记为,,那么与之积是与点位置无关的定值.试对双曲线且为常数写出类似的性质,并加以证明.
为了提高产品的年产量,某企业拟在2013年进行技术改革.经调查测算,产品当年的产量万件与投入技术改革费用万元()满足(为常数).如果不搞技术改革,则该产品当年的产量只能是1万件.已知2013年生产该产品的固定收入为8万元,每生产1万件该产品需要再投入16万元.由于市场行情较好,厂家生产的产品均能销售出去.厂家将每件产品的销售价格定为每件产品生产成本的倍(生产成本包括固定投入和再投入两部分资金).(Ⅰ)试确定的值,并将2013年该产品的利润万元表示为技术改革费用万元的函数(利润=销售金额―生产成本―技术改革费用);(Ⅱ)该企业2013年的技术改革费用投入多少万元时,厂家的利润最大?
已知定义域为的函数是奇函数.(Ⅰ)求实数的值; (Ⅱ)解关于的不等式.
设命题p:函数的定义域为R;命题q:不等式对任意恒成立.(Ⅰ)如果p是真命题,求实数的取值范围;(Ⅱ)如果命题“p或q”为真命题且“p且q”为假命题,求实数的取值范围.
已知集合,集合,集合.(Ⅰ)设全集,求; (Ⅱ)若,求实数的取值范围.