在直角坐标系xOy中,曲线C的参数方程为 x = 1 - t 2 1 + t 2 , y = 4 t 1 + t 2 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 2 ρ cos θ + 3 ρ sin θ + 11 = 0 .
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
已知集合A=,B={x|x2-2x-m<0}, (1)当m=3时,求A∩(∁RB); (2)若A∩B={x|-1<x<4},求实数m的值
已知椭圆E:(0)过点(0,),其左焦点与点P(1,)的连线与圆相切。 (1)求椭圆E的方程; (2)设Q为椭圆E上的一个动点,试判断以为直径的圆与圆的位置关系,并证明
如图,P—ABCD是正四棱锥,是正方体,其中 (1)求证:; (2)求平面PAD与平面所成的锐二面角的余弦值; (3)求到平面PAD的距离
在△ABC中,a、b是方程x2-2mx+2=0的两根,且2cos(A+B)=-1 (1)求角C的度数; (2)求△ABC的面积
已知函数是增函数,为减函数. (1)求a的值; (2)设函数上的增函数,且对于内的任意两个变量s、t,恒成立,求实数b的取值范围; (3)设,求证: