如图,长方体 ABCD- A 1 B 1 C 1 D 1的底面 ABCD是正方形,点 E在棱 AA 1上, BE⊥ EC 1.
(1)证明: BE⊥平面 EB 1 C 1;
(2)若 AE= A 1 E,求二面角 B- EC- C 1的正弦值.
选修4-5:(本小题满分10分)不等式选讲 已知实数a、b、c、d满足,,求ac+bd的最大值.
选修4—1:(本小题满分10分)几何证明选讲 如图,在△ABC中,∠C为钝角,点E, H分别是边AB上的点,点K和M分别 是边AC和BC上的点,且AH=AC,EB =BC,AE=AK,BH=BM. (Ⅰ)求证:E、H、M、K四点共圆; (Ⅱ)若KE=EH,CE=3,求线段KM的 长.
((本小题满分12分) 已知x>,函数f(x)=,h(x)=2e lnx(e为自然常数). (Ⅰ)求证:f(x)≥h(x); (Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.
((本小题满分12分) 在平面直角坐标系xOy中,点P(x,y)为动点,已知点A(,0),B(-,0),直线PA与PB的斜率之积为定值-. (Ⅰ)求动点P的轨迹E的方程; (Ⅱ)若F(1,0),过点F的直线l交轨迹E于M、N两点,以MN为对角线的正方形的第三个顶点恰在y轴上,求直线l的方程.
(本小题满分12分) 如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2. (Ⅰ)求三棱锥C-A1B1C1的体积V; (Ⅱ)求直线BD1与平面ADB1所成角的正弦值; (Ⅲ)若棱AA1上存在一点P,使得=λ, 当二面角A-B1C1-P的大小为30°时,求实 数λ的值.