已知a,b,c为正数,且满足abc=1.证明:
(1) 1 a + 1 b + 1 c ≤ a 2 + b 2 + c 2 ;
(2) ( a + b ) 3 + ( b + c ) 3 + ( c + a ) 3 ≥ 24 .
(本小题满分14分)已知角,且, (I) 求的值; (II)求的值.
(本小题满分15分) (Ⅰ)如图1,是平面内的三个点,且与不重合,是平面内任意一点,若点在直线上,试证明:存在实数,使得:. (Ⅱ)如图2,设为的重心,过点且与、(或其延长线)分别交于点,若,,试探究:的值是否为定值,若为定值,求出这个定值;若不是定值,请说明理由.
(本小题满分15分) 已知定义在上的函数,最大值与最小值的差为4,相邻两个最低点之间距离为,且函数图象所有的对称中心都在图象的对称轴上. (I)求的表达式; (II)若,求的值; (III)设,,,若恒成立,求实数的取值范围.
(本小题满分14分) 已知向量且,函数 (I)求函数的最小正周期及单调递增区间; (II)若,分别求及的值
(本小题满分14分)已知向量,. (I) 若,共线,求的值; (II)当时,求与夹角的余弦值.