已知a,b,c为正数,且满足abc=1.证明:
(1) 1 a + 1 b + 1 c ≤ a 2 + b 2 + c 2 ;
(2) ( a + b ) 3 + ( b + c ) 3 + ( c + a ) 3 ≥ 24 .
在等差数列中,,其前项和为,等比数列的各项均为正数,,其前项和为,且,. (1)求数列和数列的通项; (2)问是否存在正整数,,,使得成立?如果存在,请求出,,的关系式;如果不存在,请说明理由.
已知椭圆()的离心率为,.分别为椭圆的左.右焦点,若椭圆的焦距为. (1)求椭圆的方程; (2)设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求面积的最大值.
在正四面体中,点在上,点在上,且. 证明:(1)平面; (2)直线直线.
已知函数(,). (1)若,求函数的单调增函数; (2)若时,函数的最大值为,最小值为,求,的值.
将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C的参数方程; (2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.