如图所示,直三棱柱ABCA1B1C1中,D、E分别是AB、BB1的中点,AA1=AC=CB=AB.(1)证明:BC1∥平面A1CD;(2)求二面角DA1CE的正弦值..
(本小题满分14分) 设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E. (1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程; (3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
(本小题满分14分) 设椭圆E: (a,b>0)过M(2,),N (,1)两点,O为坐标原点, (I)求椭圆E的方程; (II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由。
(本小题共14分) 已知双曲线的离心率为,右准线方程为 (Ⅰ)求双曲线的方程; (Ⅱ)设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值.
在平面直角坐标系 x O y 中,抛物线 C 的顶点在原点,经过点 A ( 2 , 2 ) ,其焦点 F 在 x 轴上.
(1)求抛物线 C 的标准方程; (2)求过点 F ,且与直线 O A 垂直的直线的方程; (3)设过点 M ( m , 0 ) ( m > 0 ) 的直线交抛物线 C 于 D 、 E 两点, M E = 2 D M ,记 D 和 E 两点间的距离为 f ( m ) ,求 f ( m ) 关于 m 的表达式.
(本小题共14分) 已知双曲线的离心率为,右准线方程为。 (Ⅰ)求双曲线C的方程; (Ⅱ)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求m的值.