设无穷数列{an}满足:n∈Ν,an<an+1,an∈N.记bn=aan,cn=aan+1(n∈N*).(1)若bn=3n(n∈N*),求证:a1=2,并求c1的值;(2)若{cn}是公差为1的等差数列,问{an}是否为等差数列,证明你的结论.
小李、小王、小张三人在一起做游戏时,需要确定做游戏的先后顺序,他们约定用“剪刀、布、锤子”的方式确定,在一个回合中.求:(Ⅰ) 恰有一人出“布”的概率;(Ⅱ) 至少有一人出“布”的概率.
已知函数,满足:①对任意,都有;②对任意n∈N *都有. (Ⅰ)试证明:为上的单调增函数;(Ⅱ)求;(Ⅲ)令,试证明:
函数关于直线对称的函数为,又函数的导函数为,记.(Ⅰ)设曲线在点处的切线为, 与圆相切,求的值;(Ⅱ)求函数的单调区间;(Ⅲ)求函数在[0,1]上的最大值.
如图,已知椭圆的右焦点为F,过F的直线(非x轴)交椭圆于M、N两点,右准线交x轴于点K,左顶点为A. (Ⅰ)求证:KF平分∠MKN;(Ⅱ)直线AM、AN分别交准线于点P、Q,设直线MN的倾斜角为,试用表示线段PQ的长度|PQ|,并求|PQ|的最小值.
(本小题满分13分)如图,直三棱柱A1B1C1-ABC中,C1C=CB=CA=2,AC⊥CB.D、E分别为棱C1C、B1C1的中点. (Ⅰ)求A1B与平面A1C1CA所成角的大小;(Ⅱ)求二面角B-A1D-A的大小;(Ⅲ)试在线段AC上确定一点F,使得EF⊥平面A1BD.