设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(1)求{an},{bn}的通项公式.(2)求数列{}的前n项和Sn.
已知函数(1)判断函数的奇偶性,并说明理由;(2) 若函数数在区间上是增函数,求实数a的取值范围。
设函数,其中。(Ⅰ)当时,求不等式的解集(Ⅱ)若不等式的解集为 ,求a的值。
在直角坐标系xOy 中,曲线C1的参数方程为(为参数)M是C1上的动点,P点满足,P点的轨迹为曲线C2(Ⅰ)求C2的方程(Ⅱ)在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求.
如图,,分别为的边,上的点,且不与的顶点重合。已知的长为,,的长是关于的方程x2-14x+mn=0的两个根。(Ⅰ)证明:,,,四点共圆;(Ⅱ)若,且,求,,,所在圆的半径。
已知函数,函数⑴当时,求函数的表达式;⑵若,函数在上的最小值是2 ,求的值;⑶在⑵的条件下,求直线与函数的图象所围成图形的面积.