(本小题满分10分)选修4-4:坐标系与参数方程已知曲线。(Ⅰ)将曲线的参数方程化为普通方程;(Ⅱ)若把曲线上各点的坐标经过伸缩变换后得到曲线,求曲线上任意一点到两坐标轴距离之积的最大值.
已知x,y∈(-,)且xy=-1,求的最小值。
在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2),且斜率为k的直线与圆Q相交于不同的两点A,B.(1)求k的取值范围;(2)是否存在常数k,使得向量+与共线?如果存在,求k值;如果不存在,请说明理由.
(高考真题)已知函数,其中,为自然对数的底数。(1)设是函数的导函数,求函数在区间上的最小值;(2)(能力提升)若,函数在区间内有零点,求的取值范围
已知函数f(x)=(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间;(3)(能力提升)设g(x)=xf′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2.
函数().若存在,使,求a的取值范围.