(满分12分)已知向量,,动点从点开始沿着与向量相同的方向做匀速直线运动,速度大小为;另一动点从点开始沿着与向量相同的方向做匀速直线运动,速度大小为,设、在秒时刻分别在、处.(Ⅰ)经过多长时间最小?求出最小值;(Ⅱ)经过多长时间后,求出值.
设抛物线的焦点为,点,线段的中点在抛物线上. 设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆. (1)求的值; (2)证明:圆与轴必有公共点; (3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.
已知为公差不为零的等差数列,首项,的部分项、、恰为等比数列,且,,. (1)求数列的通项公式(用表示); (2)若数列的前项和为,求.
已知函数. (1)当时,求函数单调区间; (2)若函数在区间[1,2]上的最小值为,求的值.
如图所示的多面体中,是菱形,是矩形,面,. (1)求证:平; (2)若,求四棱锥的体积.
某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是,样本数据分组为,,,,. (1)求直方图中的值; (2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿;