已知函数.其中.(1)若曲线y=f(x)与y=g(x)在x=1处的切线相互平行,求两平行直线间的距离;(2)若f(x)≤g(x)-1对任意x>0恒成立,求实数的值;(3)当<0时,对于函数h(x)=f(x)-g(x)+1,记在h(x)图象上任取两点A、B连线的斜率为,若,求的取值范围.
某地区发生流行性病毒感染,居住在该地区的居民必须服用一种药物预防,规定每人每天早晚八时各服一片,现知该药片每片含药量为220毫克,若人的肾脏每12小时从体内滤出这种药的60%,在体内的残留量超过386毫克,就将产生副作用. (1)某人上午八时第一次服药,问到第二天上午八时服完药时,这种药在他体内还残留多少?(2) 长期服用的人这种药会不会产生副作用?
已知函数在点处有极小值-1,(1)试确定、的值,(2)并求出的单调区间。
已知:A、B是ABC的两个内角,, 其中、为相互垂直的单位矢量.若 | | =,试求tanA·tanB的值.
当m为何实数时,复数z=+(m2+3m-10)i;(1)是实数;(2)是虚数;(3)是纯虚数.
抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S.求使S达到最大值的a、b值,并求Smax.