定义:若在上为增函数,则称为“k次比增函数”,其中. 已知其中e为自然对数的底数.(1)若是“1次比增函数”,求实数a的取值范围;(2)当时,求函数在上的最小值;(3)求证:.
求使函数y=-2sin2x取得最大值的x的集合,并指出最大值是什么。
求函数y=tan(x+)的定义域.
本题满分12分) 在直角坐标平面内,已知点,动点满足. (1)求动点的轨迹的方程; (2)过点作直线与轨迹交于两点,线段的中点为,轨迹的右端点为点N,求直线MN的斜率的取值范围.
如图已知,点P是直角梯形ABCD所在平面外一点,PA⊥平面ABCD,,,。 (1)求证:; (2)求直线PB与平面ABE所成的角; (3)求A点到平面PCD的距离。
已知数列{}的首项,通项(为常数),且成等差数列,求:(1)的值; (2)数列{}的前项的和的公式。