如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.
某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形休闲区A1B1C1D1和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米(如图所示).(1)若设休闲区的长和宽的比=x,求公园ABCD所占面积S关于x的函数解析式.(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽应如何设计?
已知a,b,x,y∈R+,x,y为变量,a,b为常数,且a+b=10,+=1,x+y的最小值为18,求a,b.
已知a,b,c均为正数,且a+b+c=1,求证:++≥9.
已知a,b,x,y都是正数,且a+b=1,求证:(ax+by)(bx+ay)≥xy.
实数x,y,z满足x2-2x+y=z-1且x+y2+1=0,试比较x,y,z的大小.