某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形休闲区A1B1C1D1和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米(如图所示).(1)若设休闲区的长和宽的比=x,求公园ABCD所占面积S关于x的函数解析式.(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽应如何设计?
( 12分)已知在与时都取得极值.(Ⅰ)求的值;(Ⅱ)若,求的单调区间和极值。
在⊿ABC中,BC=,AC=3,sinC=2sinA (I) 求AB的值: (II) 求sin的值
已知数列,满足,其中.(Ⅰ)若,求数列的通项公式;(Ⅱ)若,且.(ⅰ)记,求证:数列为等差数列;(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次. 求首项应满足的条件.
设函数(Ⅰ)当时,求的最大值;(Ⅱ)令,(),其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围;(Ⅲ)当,,方程有唯一实数解,求正数的值.
设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:与y轴的交点为B,且经过F1,F2点.(Ⅰ)求椭圆C1的方程;(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求面积的最大值.