设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:与y轴的交点为B,且经过F1,F2点.(Ⅰ)求椭圆C1的方程;(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求面积的最大值.
在直角坐标 x O y 中,圆 C 1 : x 2 + y 2 = 4 ,圆 C 2 : x - 2 2 + y 2 = 4 . (Ⅰ)在以 O 为极点, x 轴正半轴为极轴的极坐标系中,分别写出圆 C 1 , C 2 的极坐标方程,并求出圆 C 1 , C 2 的交点坐标(用极坐标表示); (Ⅱ)求出 C 1 与 C 2 的公共弦的参数方程.
如图, ⊙ O 和 ⊙ O ` 相交于 A , B 两点,过 A 作两圆的切线分别交两圆于 C , D 两点,连接 D B 并延长交 ⊙ O 于点 E .证明
(Ⅰ) A C · B D = A D · A B ; (Ⅱ) A C = A E .
设 f ( x ) = ln ( x + 1 ) + x + 1 + a x + b ( a , b ∈ R , a , b 为常数 ) ,曲线 y = f ( x ) 与直线 y = 3 2 x 在 0 , 0 点相切. (Ⅰ)求 a , b 的值。 (Ⅱ)证明:当 0 < x < 2 时, f ( x ) < 9 x x + 6 .
如图,椭圆 C 0 : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 , a , b 为常数),动圆 C 1 : x 2 + y 2 = t 1 2 , b < t 1 < a .点 A 1 , A 2 分别为 C 0 的左,右顶点, C 1 与 C 0 相交于 A , B , C , D 四点.
(1)求直线 A A 1 与直线 A 2 B 交点 M 的轨迹方程; (2)设动圆 C 2 : x 2 + y 2 = t 2 2 与相交于 A ` , B ` , C ` , D ` 四点,其中 b < t 2 < a , t 1 ≠ t 2 。若矩形 A B C D 与矩形 A ` B ` C ` D ` 的面积相等,证明: t 1 2 + t 2 2 为定值.
电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查。下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;
将日均收看该体育节目时间不低于40分钟的观众称为"体育迷"。 (Ⅰ)根据已知条件完成下面的 2 × 2 列联表,并据此资料你是否认为"体育迷"与性别有关?
(Ⅱ)将上述调查所得到的频率视为概率。现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的"体育迷"人数为 X .若每次抽取的结果是相互独立的,求 X 的分布列,期望 E ( X ) 和方差 D ( X ) .