设函数(Ⅰ)当时,求的最大值;(Ⅱ)令,(),其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围;(Ⅲ)当,,方程有唯一实数解,求正数的值.
已知A.B是椭圆上两点,O是坐标原点,定点,向量.在向量方向上的投影分别是m.n ,且7mn ,动点P满足 (Ⅰ)求点P的轨迹C的方程; (Ⅱ)设过点E的直线l与C交于两个不同的点M.N,求的取值范围。
已知点P与定点F的距离和它到定直线l:的距离之比是1 : 2.(1)求点P的轨迹C方程;(2)过点F的直线交曲线C于A, B两点, A, B在l上的射影分别为M, N. 求证AN与BM的公共点在x轴上.
已知双曲线G的中心在原点,它的渐近线与圆相切,过点P(-4,0)作斜率为的直线l,使得l和G交于A、B两点,和y轴交于点C,并且点P在线段AB上,又满足(1)求双曲线G的渐近线方程(2)求双曲线G的方程(3)椭圆S的中心在原点,它的短轴是G的实轴,如果S中垂直于l的平行弦的中点轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程。
设动点到定点的距离比它到轴的距离大.记点的轨迹为曲线(1)求点的轨迹方程;(2)设圆过,且圆心在的轨迹上,是圆在轴上截得的弦,当运动时弦长是否为定值?请说明理由.
设椭圆的离心率为=,点是椭圆上的一点,且点到椭圆两焦点的距离之和为4.(1)求椭圆的方程;(2)椭圆上一动点关于直线的对称点为,求的取值范围.