已知双曲线G的中心在原点,它的渐近线与圆相切,过点P(-4,0)作斜率为的直线l,使得l和G交于A、B两点,和y轴交于点C,并且点P在线段AB上,又满足(1)求双曲线G的渐近线方程(2)求双曲线G的方程(3)椭圆S的中心在原点,它的短轴是G的实轴,如果S中垂直于l的平行弦的中点轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程。
设关于x的方程sin=在内有两个不同根α、β,求α+β的值及k的取值范围.
如图:某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b(1)求这段时间的最大温差.(2)写出这段曲线的函数解析式.
单摆从某点开始左右摆动,它离开平衡位置的位移S(厘米)和时间t(秒)的函数关系是S=6sin.求:(1)单摆开始摆动(t=0)时离开平衡位置的位移;(2)单摆离开平衡位置的最大位移;(3)单摆来回摆动一次所需要的时间.
已知电流I与时间t的关系式为I=Asin(ωt+φ).(1)如图是I=Asin(ωt+φ)(ω>0,|φ|<)在一个周期内的图象,根据图中数据求解析式.(2)如果t在任意一段秒的时间内,电流I=Asin(ωT+φ)都能取得最大值和最小值,那么ω的最小正整数值是多少?
已知飞机从甲地按北偏东30°的方向飞行2000km到达乙地,再从乙地按南偏东30°的方向飞行2000km到达丙地,再从丙地按西南方向飞行1000km到达丁地,问丁地在甲地的什么方向?丁地距甲地多远?