已知函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}是各项均不为0的等差数列,其前n项和为Sn,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足b1=2,bn≠1,且(bn-bn+1)·g(bn)=f(bn)(n∈N+).(1)求an并证明数列{bn-1}是等比数列;(2)若数列{cn}满足cn=,证明:c1+c2+c3+…+cn<3.
(本小题满分12分) 某客运公司争取到一个相距100海里的甲、乙两地的客运航线权。已知轮船的平均载客人数为200人,轮船每小时使用的燃料费和轮船航行速度的平方成正比,轮船的最大速度为20海里/小时,当船速为10海里/小时,它的燃料费用是每小时60元,其余费用(不论速度如何)总计是每小时150元,假定轮船从甲地到乙地匀速航行。 (I)求轮船每小时的燃料费W与速度v的关系式; (II)若公司打算从每位乘客身上获得利润10元,那么该公司设计的船票价格最低可以是多少?(精确到1元,参考数据:)
(本小题满分12分)A是锐角。 (I)求的值; (II)若的面积。
(本小题满分12分)已知△ABC三个内角A、B、C的对边分别为a、b、c,向量。 (1)求A; (2)已知,求bc的最大值。
(本小题满分12分)将一张2×6米的硬钢板按图纸的要求进行操作:沿线裁去阴影部分,把剩余的部分按要求焊接成一个有盖的长方体水箱(⑦为底,①②③④为侧面,⑤+⑥为水箱盖,其中①与③、②与④分别是全等的矩形,且⑤+⑥=⑦),设水箱的高为x米,容积为y立方米。 (1)写出y关于x的函数关系式; (2)如何设计x的大小,使得水箱的容积最大?
(本小题满分12分)设函数若它是R上的单调函数,且1是它的零点。 (1)求实数a的值;
(2)设的图象的切线与x轴交于点的图象的切线与x轴于……,依此下去,过作函数的图象的切线与x轴交于点……,若求证:成等比数列;并求数列的通项公式。(已知)