(本小题满分12分)某客运公司争取到一个相距100海里的甲、乙两地的客运航线权。已知轮船的平均载客人数为200人,轮船每小时使用的燃料费和轮船航行速度的平方成正比,轮船的最大速度为20海里/小时,当船速为10海里/小时,它的燃料费用是每小时60元,其余费用(不论速度如何)总计是每小时150元,假定轮船从甲地到乙地匀速航行。(I)求轮船每小时的燃料费W与速度v的关系式;(II)若公司打算从每位乘客身上获得利润10元,那么该公司设计的船票价格最低可以是多少?(精确到1元,参考数据:)
设,求的最大值与最小值。
若抛物线的顶点在原点,开口向上,F为焦点,M为准线与Y轴的交点,A为抛物线上一点,且,求此抛物线的方程
求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2)(2)焦点在直线上
已知中心在原点的双曲线C的右焦点为,右顶点为. (Ⅰ)求双曲线C的方程 (Ⅱ)若直线与双曲线恒有两个不同的交点A和B且(其中为原点),求k的取值范围
证明:以抛物线焦点弦为直径的圆与抛物线的准线相切