(本小题满分12分)某客运公司争取到一个相距100海里的甲、乙两地的客运航线权。已知轮船的平均载客人数为200人,轮船每小时使用的燃料费和轮船航行速度的平方成正比,轮船的最大速度为20海里/小时,当船速为10海里/小时,它的燃料费用是每小时60元,其余费用(不论速度如何)总计是每小时150元,假定轮船从甲地到乙地匀速航行。(I)求轮船每小时的燃料费W与速度v的关系式;(II)若公司打算从每位乘客身上获得利润10元,那么该公司设计的船票价格最低可以是多少?(精确到1元,参考数据:)
已知圆C满足:①截Y轴所得弦长为2,②被X轴分成两段弧,其弧长的比为3∶1,③圆心到直线:的距离为. (1)求圆C的方程; (2)过点的直线能否与圆C相切,若相切,求切线方程,若不相切,说明理由.
已知椭圆C:,直线过点P交椭圆C于A、B两点. (1)若P是AB中点,求直线的方程及弦AB的长; (2)求弦AB中点M的轨迹方程.
已知函数,. (1)求函数的最小正周期和单调增区间; (2)说明的图象可以由函数的图象经过怎样的变换得到.
设函数,若且. 求证:.
设,求函数的最小值及相应的值.