设无穷数列的首项,前项和为(),且点在直线上(为与无关的正实数).(1)求证:数列()为等比数列;(2)记数列的公比为,数列满足,设,求数列的前项和;(3)若(2)中数列{Cn}的前n项和Tn当时不等式恒成立,求实数a的取值范围。
某人随机地将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子中,每个盒子放一个小球,全部放完。(I)求编号为奇数的小球放入到编号为奇数的盒子中的概率值;(II)当一个小球放到其中一个盒子时, 若球的编号与盒子的编号相同 ,称这球是“放对”的,否则称这球是“放错”的。设“放对”的球的个数为的分布列及数学期望。
已知是数列的前n项和,满足关系式,(n≥2,n为正整数).(1)令,证明:数列是等差数列;(2)求数列的通项公式;(3)对于数列,若存在常数M>0,对任意的,恒有≤M成立,称数列为“差绝对和有界数列”,证明:数列为“差绝对和有界数列”.
设m为实数,函数, .(1)若≥4,求m的取值范围;(2)当m>0时,求证在上是单调递增函数;(3)若对于一切,不等式≥1恒成立,求实数m的取值范围.
某学校数学兴趣小组有10名学生,其中有4名女同学;英语兴趣小组有5名学生,其中有3名女学生,现采用分层抽样方法(层内采用不放回简单随机抽样)从数学兴趣小组、英语兴趣小组中共抽取3名学生参加科技节活动。(1)求从数学兴趣小组、英语兴趣小组各抽取的人数; (2)求从数学兴趣小组抽取的学生中恰有1名女学生的概率;(3)记表示抽取的3名学生中男学生数,求的分布列及数学期望。
如图,过椭圆的左焦点作x轴的垂线交椭圆于点P,点A和点B分别为椭圆的右顶点和上顶点,OP∥AB.(1)求椭圆的离心率e(2)过右焦点作一条弦QR,使QR⊥AB.若△的面积为,求椭圆的方程.