某人随机地将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子中,每个盒子放一个小球,全部放完。(I)求编号为奇数的小球放入到编号为奇数的盒子中的概率值;(II)当一个小球放到其中一个盒子时, 若球的编号与盒子的编号相同 ,称这球是“放对”的,否则称这球是“放错”的。设“放对”的球的个数为的分布列及数学期望。
(本小题满分12分)已知点分别是椭圆的左、右焦点, 点在椭圆上上. (1)求椭圆的标准方程; (2)设直线若、均与椭圆相切,试探究在轴上是否存在定点,点到的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.
(本小题满分12分)设函数 (1)当时,求的单调区间; (2)若当时,恒成立,求的取值范围.
(本小题满分12分)如图所示,矩形中,,,,且,交于点。 (1)求证:; (2)求三棱锥的体积.
(本小题满分12分)某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:
(1)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关? (2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率. 下面的临界值表供参考:
(参考公式:,其中)
(本小题满分12分)如图,在中,已知,是边上的一点, (1)求的值; (2)求的值.