如图,在△ABC中,B=,BC=2,点D在边AB上,AD=DC,DE⊥AC,E为垂足.(1)若△BCD的面积为,求CD的长;(2)若ED=,求角A的大小.
已知数列满足().(1)求的值;(2)求(用含的式子表示);(3)记,数列的前项和为,求(用含的式子表示).).
某通讯公司需要在三角形地带区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域内,乙中转站建在区域内.分界线固定,且=百米,边界线始终过点,边界线满足.设()百米,百米.(1)试将表示成的函数,并求出函数的解析式;(2)当取何值时?整个中转站的占地面积最小,并求出其面积的最小值.
已知复数.(1)求的最小值;(2)设,记表示复数z的虚部).将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得的图像向右平移个单位长度,得到函数的图像.试求函数的解析式.
已知矩形是圆柱体的轴截面,分别是下底面圆和上底面圆的圆心,母线长与底面圆的直径长之比为,且该圆柱体的体积为,如图所示.(1)求圆柱体的侧面积的值;(2)若是半圆弧的中点,点在半径上,且,异面直线与所成的角为,求的值.
已知函数是定义域为的偶函数.当时,若关于的方程有且只有7个不同实数根,则的值是.