(本小题满分12分)在 中,内角 的对边分别为 ,已知 ,且 成等比数列.(Ⅰ)求 的值;(Ⅱ)若 求 的值.
设函数f(x)=+sinx的所有正的极小值点从小到大排成的数列为{xn}.(1)求数列{xn}的通项公式.(2)设{xn}的前n项和为Sn,求sinSn.
已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3·a4=117,a2+a5=22.(1)求数列{an}的通项公式an.(2)若数列{bn}是等差数列,且bn=,求非零常数c.
知{an}是首项为-2的等比数列,Sn是其前n项和,且S3,S2,S4成等差数列,(1)求数列{an}的通项公式.(2)若bn=log2|an|,求数列{}的前n项和Tn.
已知数列{an}的首项为a1=1,其前n项和为Sn,且对任意正整数n有n,an,Sn成等差数列.(1)求证:数列{Sn+n+2}成等比数列.(2)求数列{an}的通项公式.
已知各项都不相等的等差数列{an}的前6项和为60,且a6为a1和a21的等比中项.(1)求数列{an}的通项公式.(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=3,求数列{}的前n项和Tn.