已知椭圆的离心率为,直线与圆相切.(1)求椭圆的方程;(2)设直线与椭圆的交点为,求弦长.
已知椭圆:的离心率,并且经过定点.(1)求椭圆的方程;(2)设为椭圆的左右顶点,为直线上的一动点(点不在x轴上),连交椭圆于点,连并延长交椭圆于点,试问是否存在,使得成立,若存在,求出的值;若不存在,说明理由.
如图,已知四棱锥,底面为菱形,平面,,分别是的中点. (1)证明:; (2)若,求二面角的余弦值.
已知等差数列的各项均为正数,,其前项和为,为等比数列, ,且.(1)求与;(2)若对任意正整数和任意恒成立,求实数的取值范围.
已知函数.(1)求该函数图象的对称轴;(2)在中,角所对的边分别为,且满足,求的取值范围.
已知函数f(x)=+lnx(a>0)(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;(2)当a=1时,求f(x)在[,2]上的最大值和最小值.