如图,已知四棱锥,底面为菱形,平面,,分别是的中点. (1)证明:; (2)若,求二面角的余弦值.
某园林局对1000株树木的生长情况进行调查,其中槐树600株,银杏树400株. 现用分层抽样方法从这1000株树木中随机抽取100株,其中银杏树树干周长(单位:cm)的抽查结果如下表:
(I)求的值 ; (II)若已知树干周长在30cm至40cm之间的4株银杏树中有1株患有虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.求排查的树木恰好为2株的概率.
设角是的三个内角,已知向量,,且. (Ⅰ)求角的大小; (Ⅱ)若向量,试求的取值范围
设椭圆的离心率,右焦点到直线的距离O为坐标原点。 (I)求椭圆C的方程; (II)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明: 点O到直线AB的距离为定值,并求弦AB长度的最小值。
已知函数是的导函数。 (I)当a=2时,对于任意的的最小值; (II)若存在,使求a的取值范围。
如图,已知直三棱柱ABC—A1B1C1,。E、F分别是棱CC1、AB中点。 (1)求证:; (2)求四棱锥A—ECBB1的体积; (3)判断直线CF和平面AEB1的位置关系,并加以证明。