已知函数f(x)=+lnx(a>0)(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;(2)当a=1时,求f(x)在[,2]上的最大值和最小值.
已知函数,,其中,设. (1)判断的奇偶性,并说明理由; (2)若,求使成立的x的集合.
商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高, 购买人数越少。把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元. 现 在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的相同价格(标价)出售, 问: (Ⅰ)商场要获取最大利润,羊毛衫的标价应定为每件多少元? (Ⅱ)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%, 那么羊毛衫的标价为每件多少元?
已知f(x)定义在R上的偶函数,在区间上递增,且有,求a的取值范围.
(1)化简: (2)计算:
探究函数,的最小值,并确定取得最小值时的值,列表如下:
请观察表中值随值变化的特点,完成下列问题: (1) 当时,在区间上递减,在区间上递增; 所以,=时, 取到最小值为; (2) 由此可推断,当时,有最值为,此时=; (3) 证明: 函数在区间上递减; (4) 若方程在内有两个不相等的实数根,求实数的取值范围。