已知椭圆:的离心率,并且经过定点.(1)求椭圆的方程;(2)设为椭圆的左右顶点,为直线上的一动点(点不在x轴上),连交椭圆于点,连并延长交椭圆于点,试问是否存在,使得成立,若存在,求出的值;若不存在,说明理由.
(不等式选讲)用数学归纳法证明不等式:(且)
(本小题满分16分)已知⊙由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足 (1)求实数a,b间满足的等量关系;(2)求线段PQ长的最小值;(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程。
(本小题满分15分)如图所示,在直四棱柱中,, ,点是棱上一点.(Ⅰ)求证:面;(5分)(Ⅱ)求证:;(5分)(Ⅲ)试确定点的位置,使得平面平面. (5分)
(本小题满分14分)函数的图象在y轴右侧的第一个最高点(即函数取得最大值的点)为,在原点右侧与x轴的第一个交点为Q(). 求:(1)函数的表达式; (2)函数在区间上的对称轴的方程.
(坐标系与参数方程)已知直线的参数方程:(为参数)和圆的极坐标方程:(为参数).(1)将直线的参数方程和圆的极坐标方程化为直角坐标方程;(2)判断直线和圆的位置关系.