如图,抛物线(b,c是常数,且c<0)与轴分别交于点A、B(点A位于点B的左侧),与轴的负半轴交于点C,点A的坐标为(-1,0).(1)请直接写出点OA的长度;(2)若常数b,c满足关系式:.求抛物线的解析式.(3)在(2)的条件下,点P是轴下方抛物线上的动点,连接PB、PC.设△PBC的面积为S.①求S的取值范围;②若△PBC的面积S为整数,则这样的△PBC共有多少个(直接写出结果)?
已知x、y为实数,y=求3x+4y
先化简,再求值:,其中a=+1.
如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照下列图象并思考,完成下列各题: (1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_______,A,B两点间的距离是________; (2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是_______,A,B两点间的距离为________; (3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________. (4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么,请你求出终点B表示什么数?A,B两点间的距离为多少?
在修我县人民路的BRT(快速公交)时,需要对部分建筑进行拆迁,县政府成立了拆迁工作组,他们步行去做拆迁产生的思想工作;如果向南记为负,向北记为正;以下是他们一天中行程(单位:km):出发点,-0.7,+2.7,-1.3,+0.3,-1.4,+2.6,拆迁点; (1)工作组最后到达的地方在出发点的哪个方向?距出发点多远? (2)在一天的工作中,最远处距离出发点有多远? (3)如果平均每个拆迁地址(出发点处没有拆迁)要做1小时的思想工作,他的步行速度为2km/h,工作组早上九点出发,做完工作时是下午几点?
“囧”(jiǒng)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为、,剪去的两个小直角三角形的两直角边长也分别为、. (1)用含有、的代数式表示下图中“囧”的面积; (2)当=6,=8时,求此时“囧”的面积.