如图,在四棱锥中,底面是边长为的正方形, ,且点满足 . (1)证明:平面 . (2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .
如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪, 图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上. (1)设(x≥0),,求用表示的函数关系式,并求函数的定义域; (2).如果是灌溉水管,为节约成本,希望它最短,的位置应在哪里?如果是参观线路,则希望它最长,的位置又应在哪里?请予证明.
已知函数 (1)求函数的周期; (2)求函数的单调递增区间; (3)若时,的最小值为– 2 ,求a的值.
在分别是角A、B、C的对边,,且. (1)求角B的大小; (2)求sin A+sin C的取值范围.
已知向量=(3,-4),=(6,-3),=(5-m,-3-m). (1)若点A,B,C不能构成三角形,求实数m满足的条件; (2)若△ABC为直角三角形,求实数m的值.
(本小题满分12分)如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行. (1)求椭圆的离心率; (2)过且与AB垂直的直线交椭圆于P、Q,若的面积是,求此时椭圆的方程.