在△ABC中,三个内角A、B、C的对应边为,.(Ⅰ)当(Ⅱ)设,求的最大值.
已知的图象过点,且函数的图象关于轴对称;(1)求的值及函数的单调区间;(2)求函数极值.
某工厂生产一种产品,已知该产品的月产量x吨与每吨产品的价格(元)之间的关系为,且生产吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)
已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在轴上,求椭圆的方程.
如图,在三棱锥中,底面,点,分别在棱上,且 (Ⅰ)求证:平面;(Ⅱ)当为的中点时,求与平面所成的角的正弦值;(Ⅲ)是否存在点使得二面角为直二面角?若存在,请确定点E的位置;若不存在,请说明理由.
如图1,在平行四边形ABCD中,AB=1,BD=,∠ABD=90°,E是BD上的一个动点,现将该平行四边形沿对角线BD折成直二面角A-BD-C,如图2所示. (1)若F、G分别是AD、BC的中点,且AB∥平面EFG,求证:CD∥平面EFG; (2)当图1中AE+EC最小时,求图2中二面角A-EC-B的大小.