计算: .
平面直角坐标系 xOy 中,点 P 的坐标为 ( m + 1 , m - 1 ) .
(1)试判断点 P 是否在一次函数 y = x - 2 的图象上,并说明理由;
(2)如图,一次函数 y = - 1 2 x + 3 的图象与 x 轴、 y 轴分别相交于点 A 、 B ,若点 P 在 ΔAOB 的内部,求 m 的取值范围.
“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:
根据以上信息完成下列问题:
(1)补全条形统计图;
(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.
(1)计算: ( 7 - 1 ) 0 - ( - 1 2 ) - 2 + 3 tan 30 ° ;
(2)解方程: x + 1 x - 1 + 4 1 - x 2 = 1 .
如图,在矩形纸片 ABCD 中,已知 AB = 1 , BC = 3 ,点 E 在边 CD 上移动,连接 AE ,将多边形 ABCE 沿直线 AE 翻折,得到多边形 AB ' C ' E ,点 B 、 C 的对应点分别为点 B ' 、 C ' .
(1)当 B ' C ' 恰好经过点 D 时(如图 1 ),求线段 CE 的长;
(2)若 B ' C ' 分别交边 AD , CD 于点 F , G ,且 ∠ DAE = 22 . 5 ° (如图 2 ) ,求 ΔDFG 的面积;
(3)在点 E 从点 C 移动到点 D 的过程中,求点 C ' 运动的路径长.
如图,在平面直角坐标系 xOy 中,抛物线 y = x 2 - 2 x - 3 交 x 轴于 A , B 两点(点 A 在点 B 的左侧),将该抛物线位于 x 轴上方曲线记作 M ,将该抛物线位于 x 轴下方部分沿 x 轴翻折,翻折后所得曲线记作 N ,曲线 N 交 y 轴于点 C ,连接 AC 、 BC .
(1)求曲线 N 所在抛物线相应的函数表达式;
(2)求 ΔABC 外接圆的半径;
(3)点 P 为曲线 M 或曲线 N 上的一动点,点 Q 为 x 轴上的一个动点,若以点 B , C , P , Q 为顶点的四边形是平行四边形,求点 Q 的坐标.