如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=,AD=1,点F是PB的中点,点E在边BC上移动.(I)求三棱锥E—PAD的体积;(II)试问当点E在BC的何处时,有EF//平面PAC;(1lI)证明:无论点E在边BC的何处,都有PEAF.
如图,斜率为1的直线过抛物线的焦点F,与抛物线交于两点A,B,(1)若|AB|=8,求抛物线的方程;(2)设C为抛物线弧AB上的动点(不包括A,B两点),求的面积S的最大值;(3)设P是抛物线上异于A,B的任意一点,直线PA,PB分别交抛物线的准线于M,N两点,证明M,N两点的纵坐标之积为定值(仅与p有关)
已知椭圆的离心率为,且过点(),(1)求椭圆的方程;(2)设直线与椭圆交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线的方程.
在平面直角坐标系中,曲线的参数方程为(,为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点,(1)求曲线,的方程;(2)若点,在曲线上,求的值.
已知圆(为参数)和直线(其中为参数,为直线的倾斜角),如果直线与圆有公共点,求的取值范围.
在平面直角坐标系中,已知曲线,以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的、倍后得到曲线,试写出直线的直角坐标方程和曲线的参数方程;(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值