在平面直角坐标系中,已知曲线,以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的、倍后得到曲线,试写出直线的直角坐标方程和曲线的参数方程;(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值
(请考生在下面甲、乙两题中任选一题做答,如果多做,则按所做的甲题计分)甲题:⑴若关于的不等式的解集不是空集,求实数的取值范围;⑵已知实数,满足,求最小值.乙题:已知曲线C的极坐标方程是=4cos。以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(是参数)。⑴将曲线C的极坐标方程化成直角坐标方程并把直线的参数方程转化为普通方程;⑵若过定点的直线与曲线C相交于A、B两点,且,试求实数的值。
若实数(1)若>2,求函数的单调区间;(2)若在区间的取值范围.
已知函数,(1)若,求的值;(2)若对于恒成立,求实数的取值范围。
通过研究学生的学习行为,专家发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f (t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中),经过实验分析得知:(1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?
设全集为R,集合,,(1)求;(2)若,求的取值范围